The Association for Science Education

Search

Filter results

The mystery tubes: teaching pupils about hypothetical modelling

Issue: December 2017 367

Author: Carole Kenrick

Extract: This article recounts the author’s working experience of one method by which pupils’ understanding of the epistemologies of science can be developed, specifically how scientists can develop hypothetical models and test them through simulations. She currently uses this approach for transition lessons with pupils in upper primary or lower secondary school (ages 7–14), but has also used it in the past with pupils aged up to 18 years.

Epistemic insight and Classrooms with Permeable Walls

Issue: December 2017 367

Author: Berry Billingsley and Andrea Ramos Arias

Extract: The boundaries between subject disciplines in secondary education today make it difficult for students to see their subjects in context. However, examining the secondary curriculum in England shows that there are a wealth of opportunities for making links and helping to develop students’ epistemic insight and scholarly thought. This article provides concrete examples of these opportunities and offers a view into ongoing research by the LASAR Centre at Canterbury Christ Church University (UK), which supports teachers in bridging subject boundaries through a strategy called Classrooms with Permeable Walls.

Things you should not believe in science

Issue: December 2017 367

Author: Keith S. Taber

Extract: This article considers the relationship between belief and learning science. It is argued that belief in science (as a process) needs to be distinguished from belief in particular scientific ideas and knowledge claims. Scientific knowledge is theoretical and provisional – something to be adopted for its utility, not as articles of faith. The scientific attitude is to always be sceptical and retain a critical attitude to what we think we know. Belief in scientific knowledge is not only inappropriate in terms of scientific values, but can also be unhelpful from an educational perspective. The science teacher should actually encourage students not to believe in the various theories, models and other products of scientific work presented in class. This approach can avoid conflicts with students’ personal beliefs, support scientific literacy, and better prepare future scientists.

Evolution, insight and truth?

Issue: December 2017 367

Author: Emma Newall

Extract: Evolution has been positioned at the centre of conflict between scientific and religious explanations of the workings of the world. However, little research has examined other possible reasons for some people rejecting scientific explanations. The author’s research indicates that for some people, irrespective of faith, the ideas associated with evolution can be potentially disturbing: ideas about change, uncertainty, absence of purpose, extinction and struggle, as well as identity. The affective dimension of teaching and learning about evolution needs to be taken into account and our classrooms should provide safe places for our students to discuss the personal implications of science.

Epistemic insight: teaching about science and RE in secondary schools

Issue: December 2017 367

Author: Tamjid Mujtaba, Michael J. Reiss and Alexis Stones

Extract: This article reports on a teaching intervention for year 9 or 10 students (age 13–15) in secondary school biology and religious education (RE) lessons that was partly intended to deepen students’ reflections, empathy and literacy when considering the similarities, differences and relationships between religion and science. The intervention proved to be generally successful in meeting its aims for the students and also led to a number of the participating teachers changing their views in ways that were more positive about the worth of examining such issues in the classroom.

The lanthanides: the forgotten elements but an excellent teaching resource

Issue: December 2017 367

Author: Christopher Talbot

Extract: This article aims to introduce the lanthanides (also known as the lanthanoids) to teachers and their students. The lanthanides are not mere ‘footnotes’ at the bottom of the periodic table but make up a group of interesting and unique metallic elements. They and their compounds have widespread technological applications that have become increasingly important in our everyday lives, such as permanent magnets (in small electronic devices), superconductors, fibre optic amplifiers and MRI contrast agents.

Exploring the public's sensory genotypes and phenotypes through innovative practice

Issue: December 2017 367

Author: Tony Milanowski

Extract: The genetic diversity contained in a population can be used to engage the audience in an understanding of human genotypes and phenotypes. With a series of simple examples of welldocumented sensory phenotypes related to the perception of colour, aromas or food preference, the diversity of the audience can be easily explored. The collecting of sensory phenotypes can be done using online polling and the results can be fed back to the audience. This allows the audience to recognise their specific genetic place in the broader population, which personalises learning and aids in the comprehension of the subject.

Using educational neuroscience and psychology to teach science. Part 1.

Issue: December 2017 367

Author: Rebecca Torrance Jenkins

Extract: This article is the first of a two-part series that explores science teachers’ and their pupils’ experiences of using different pedagogical approaches based on understandings of how brains learn. For this case-study research, nine science teachers were interviewed and four teachers self-selected to trial a pedagogical approach, new to them, from cognitive psychology and educational neuroscience, using an action research framework for between one and two academic years. Both teachers’ and their pupils’ experiences of using the approach were explored, and data were collected via observations, interviews with teachers and focus-group interviews/ written questionnaires with pupils. As in case study research, each case was examined in depth, and consequently findings are not necessarily generalisable to other cases. However, it would be valuable if other teacher-researchers tried and evaluated some of these approaches, particularly those from educational neuroscience, where recommendations are based on relatively recent research findings. Part 1 will focus on two approaches rooted in cognitive psychology: Cognitive Load Theory (CLT) and Cognitive Acceleration through Science Education (CASE); part 2 will focus on approaches from educational neuroscience: The Brain-Targeted Teaching Model (Hardiman, 2012) and Research-Based Strategies to Ignite Student Learning (Willis, 2006).

What if English is not my students' mother tongue?

Issue: December 2017 367

Author: Keith Ross and Alison Gardenier

Extract: Teaching science in an English-medium school where your students have a different mother tongue brings various issues to light. Our ultimate goal in teaching science is to help students understand the big ideas; however, poor language skills may make this hard and can lead to a heavy emphasis on ‘passing the exam at all costs’ using rote learning. This article covers ways in which students with English as an additional language can access and make sense of scientific information and ideas, in both spoken and written formats. We aim to provide students with a safe environment to practise formulating ideas no matter where their difficulties lie, be it a lack of vocabulary, a lack of background understanding or culturally different styles of learning.

Formulae as scientific stories

Issue: December 2017 367

Author: Ian Horsewell

Extract: In science lessons many students struggle to apply the principles of rearranging formulae, even after coverage in maths. A structured approach is suggested that focuses on describing a narrative linking cause and effect before explicit mathematical terms are introduced.

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. ...
  12. 170